RISH Ducer MXX Series Programmable Multi Transducer

Data Sheet
Programmable
Multi Transducer

Fig. 1. The basic version universal RISH Dmes MXX in housing clipped onto a top-hat rail.

Application

for the measurement of electrical variables in heavy current power systems

The RISH Ducer MXX series of multi-transducers (Fig. 1) simultaneously measure several variables of an electric power system and process them to produce 2 or 3 or 4 analogue output signals. 2 or 4 digital outputs are available for signaling limits or power metering. For two of the limit outputs up to 3 measurands can be logically combined.
The multi - transducers are also equipped with an serial RS 232 interface to which a PC with the corresponding software can be connected for programming or accessing \& executing useful ancillary functions. The usual modes of connection, the types of measured variables,their ratings, the transfer characteristic for each output etc. are the main parameters that have to be programmed.
Ancillary functions include a power system check, provision for displaying the measured variable on a PC monitor, the simulation of the outputs for test purposes and a facility for printing nameplates.

Unique Features

- For all heavy-current power system variables
- Up to 6 outputs (2A+4D or 4A + 2D or 2A or 3A)
- Input voltage up to 693 V (phase-to-phase)
- Universal analogue outputs (programmable)
- Simultaneous measurement of several variables of a heavycurrent power system / full supervision of an asymmetrically loaded four-wire power system, rated current 1 to 6 A , rated voltage 57 to 400 V (phase to neutral) or 100 to 693 V (phase-tophase)
- High accuracy: U/I 0.2\%, Frequency 0.15\% and P 0.25\% (under reference conditions)
- Universal digital outputs (meter transmitter, limits)
- Up to 2 or 4 integrated power meters.
- AC/DC power supply/universal (24-60V AC/DC or $85-230 \mathrm{~V}$ AC/DC)
- Provision for either snapping the transducer onto top - hat rails or securing it with screws to a wall or panel
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings

Table 1 :

Measured variables	Output	Types
Current, voltage (rms), active/reactive/ apparent power cos, sin, power factor RMS value of the current with wire setting range (bimetal measuring function)	2 analogue outputs	RISH Ducer M20
	3 analogue outputs	RISH Ducer M30
	2 analogue outputs and 4 digital outputs	RISH Ducen M24
Slave pointer function for the measurement of the RMS value IB Frequency	4 analogue outputs and 2 digital outputs	$\begin{gathered} \text { RISH Ducer } \\ \text { M42 } \end{gathered}$
	4 analogue outputs and bus RS 485 (MODBUS)	RISH Ducer M40 *
Average value of the currents with sign of the active power (power system only)	$\begin{aligned} & \text { Data bus (LON) } \\ & \text { M00 } \\ & \hline \end{aligned}$	RISH Ducer M00 *
	Bus RS 485 (MODBUS)	$\begin{gathered} \text { RISH Ducer } \\ \text { M01 * } \end{gathered}$

[^0]

1 = Input transformer
2 = Multiplexer
3 = Latching stage
4 = A/D converter
5 = Microprocessor
6 = Electrical insulation
7 = D/A converter
8 = Output amplifier/latching stage
9 = Digital output (open-collector)
10 = Programming interface RS-232
11 = Power supply

Fig. 2. Block diagram.

Table 2 : A, B, C, D = analogue outputs; E, F, G, H = digital outputs.

Models	Analog Output	Digital Output	Communication type	Programming Port
M42	$4(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$	(G, H)	-	RS 232
M24	$2(\mathrm{~A}, \mathrm{~B})$	$(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H})$	-	RS 232
M20	$2(\mathrm{~A}, \mathrm{~B})$	-	-	RS 232
M30	$3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$	-	-	RS 232
M00	-	-	LON Bus	RS 232
M40	$4(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$	-	RS 485	RS 232
M01	-	-	$R S 485$	$R 2232$

Symbols and their meaning

Table 3

Symbols	Meaning
X	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
Y	Output variable
Y0	Lower limit of the output variable
Y1	Break point of the output variable
Y2	Upper limit of the output variable
U	Input voltage
Ur	Rated value of the input voltage
U 12	Phase-to-phase voltage L1 - L2
U 23	Phase-to-phase voltage L2 - L3
U 31	Phase-to-phase voltage L3 - L1
U1N	Phase-to-neutral voltage L1 - N
U2N	Phase-to-neutral voltage L2 - N
U3N	Phase-to-neutral voltage L3 - N
UM	Average value of the voltages
	(U1N + U2N + U3N) / 3
I	Input current
I1	AC current L1

12	AC current L2
13	AC current L3
1 r	Rated value of the input current
IM	Average value of the currents ($11+12+13$ / 3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
IBT	Response time for IB
BS	Slave pointer function for the measurement of the RMS value IB
BST	Response time for BS
φ	Phase-shift between current and voltage
F	Frequency of the input variable
Fn	Rated frequency
P	Active power of the system P = P1 + P2 + P3
P1	Active power phase 1 (phase-to-neutral L1-N)
P2	Active power phase 2 (phase-to-neutral L2-N)
P3	Active power phase 3 (phase-to-neutral L3-N)
Q	Reactive power of the system Q = Q1 + Q2 + Q3
Q1	Reactive power phase 1 (phase-to-neutral L1-N)
Q2	Reactive power phase 2 (phase-to-neutral L2-N)
Q3	Reactive power phase 3 (phase-to-neutral L3-N)
S	Apparent power of the system $S=\sqrt{I_{1}^{2}+I_{2}^{2}+I_{3}^{2}} \cdot \sqrt{U_{1}^{2}+U_{2}^{2}+U_{3}^{2}}$
S1	Apparent power phase 1 (phase-to-neutral L1-N)
S2	Apparent power phase 2 (phase-to-neutral L2-N)
S3	Apparent power phase 3 (phase-to-neutral L3-N)
Sr	Rated value of the apparent power of the system
PF	Active power factor $\cos \varphi=P / S$
PF1	Active power factor phase1 P1/S1
PF2	Active power factor phase2 P2/S2
PF3	Active power factor phase3 P3/S3
QF	Reactive power factor sin j = Q/S
QF1	Reactive power factor phase1 Q1/S1
QF2	Reactive power factor phase2 Q2/S2
QF3	Reactive power factor phase3 Q3/S3
LF	Power factor of the system $L F=\operatorname{sgn} Q(1-P F)$
LF1	Power factor phase 1 sgnQ1 (1-PF1)
LF2	Power factor phase 2 sgnQ2 (1-PF2)
LF3	Power factor phase 3 sgnQ3 (1-PF3)
C	Factor for the intrinsic error
R	Output load
Rn	Rated burden

Symbols	Meaning
H	Power supply
Hn	Rated value of the power supply
CT	c.t. ratio
VT	v.t. ratio

Technical data

Input Θ
Input variables
Measuring ranges
Waveform
Rated frequency
Own consumption
see Table 10 (Page 6) and 15 (Page 11)
see Table 10 (Page 6) and 15
(Page 11)
Sinusoidal
$50 . . .60 \mathrm{~Hz} ; 162 / 3 \mathrm{~Hz}$
Voltage circuit: $\leq \mathrm{U}^{2} / 400 \mathrm{k}$ Condition:
external power supply
Current circuit: 0.3 VA I/5 A

Table 5 : Continuous thermal ratings of inputs

Current circuit	10 A 400 V
	single-phase
	AC system
	693 V
	three-phase system
Voltage circuit	480 V single-phase AC system 831 V three-phase system

Table 6 :Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit 400 V single-phase AC system 693 V three-phase system			
100 A	5	3 s	5 min .
250 A	1	1 s	1 hour
Voltage circuit 1A, 2 A, 5A			
Single-phase AC system 600 V $\mathrm{H}_{\text {intem }}: 1.5 \mathrm{Ur}$	10	10 s	10 s.
$\begin{aligned} & \text { Three-phase } \\ & \text { system } \\ & 1040 \mathrm{~V} \\ & \mathrm{H}_{\text {intenn }}: 1.5 \mathrm{Ur} \end{aligned}$	10	10 s	10 s.

Table 7: Analogue output \bigodot

Output variable \mathbf{Y}	Impressed DC current	Impressed DC voltage
Full scale Y2	see "Ordering information"	see "Ordering information"
Limits of output signal for input overload and/or $\quad \mathrm{R}=0$	see "Ordering information"	see "Ordering information"
$\mathrm{R} \rightarrow \infty$	1.25 Y 2	30 V
Rated useful range of output load	$0 \leq \frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \leq \frac{15 \mathrm{~V}}{\mathrm{Y} 2}$	$\frac{\mathrm{Y} 2}{2 \mathrm{~mA}} \leq \frac{\mathrm{Y} 2}{1 \mathrm{~mA}} \leq \infty$
AC component of output signal (peak-to-peak)	$\leq 0.005 \mathrm{Y} 2$	$\leq 0.005 \mathrm{Y} 2$

The outputs A, B, C and D may be either short or open-circuited. They are electrically insulated from each other and from all other circuits (floating)

All the full - scale output values can be reduced subsequently using the programming software, but a supplementary error results. The hardware full-scale settings for the analogue outputs may also be changed subsequently. Conversion of a current to a voltage output or vice versa is also possible. This necessities changing resistors on the output board. The full-scale values of the current and voltage outputs are set by varying the effective value of two parallel resistors (better resolution). The values of the resistors are selected to achieve the minimum absolute error. Calibration with the programming software is always necessary following conversion of the outputs. Refer to the Operating Instructions.

Caution : The warranty is void if the device is tampered.
Digital outputs, pulse outputs, limit outputs Θ -
The digital outputs conform to DIN43 864. The pulse width can be neither programmed nor is there a hardware setting.

Type of contact
Number of pulses
Pulse duration
Interval
Power supply
Output current

System response
Accuracy class
(the reference value is the fullscale value Y 2)

Table 8 :

Measured variable	Condition	Accuracy class*
System: Active, reactive and apparent power	$\begin{aligned} & 0.5 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5 \\ & 0.3 \leq \mathrm{X} 2 / \mathrm{Sr}<0.5 \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{c} \\ & 0.5 \mathrm{c} \end{aligned}$
Phase: Active, reactive and apparent power	$\begin{aligned} & 0.167 \leq X 2 / S r \leq 0.5 \\ & 0.1 \leq X 2 / S r<0.167 \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{c} \\ & 0.5 \mathrm{c} \end{aligned}$
Power factor, active power and reactive power	$\begin{aligned} & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & (\mathrm{X} 2-\mathrm{X} 0)=2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 1 \leq(\mathrm{X} 2-\mathrm{X} 0)<2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 0.5 \leq(\mathrm{X} 2-\mathrm{X} 0)<1 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & (\mathrm{X} 2-\mathrm{X} 0)=2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 1 \leq(\mathrm{X} 2-\mathrm{X}, \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \end{aligned}$	0.25 c 0.5 c 1.0 c 0.5 c 1.0 c 2.0 c
AC Voltage	0.1 Ur $\leq \mathrm{U} \leq 1.2 \mathrm{Ur}$	0.2 c
AC current/ current averages	$0.1 \mathrm{lr} \leq \mathrm{I} \leq 1.5 \mathrm{Ir}$	0.2 c
System frequency	$0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur}$ resp. $0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.5 \mathrm{Ir}$	$\begin{aligned} & \hline 0.15+0.03 \mathrm{c} \\ & \left(\mathrm{f}_{\mathrm{N}}=50 \ldots . .60 \mathrm{~Hz}\right) \\ & 0.15+0.1 \mathrm{c} \\ & \left(\mathrm{f}_{\mathrm{N}}=162 / 3 \mathrm{~Hz}\right) \end{aligned}$
Pulse	acc. to IEC 1036 $0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.5 \mathrm{Ir}$	1.0 c

* Basic accuracy 0.5 c for applications with phase-shift

Duration of the
measurement cycle

Response time
Approx. 0.25 to 0.5 s at 50 Hz , depending on measured variable \& programming 1 ... 2 times the measurement cycle
Factor c (the highest value applies)
Linear characteristic

Bent characteristic
$\mathrm{X} 0 \leq \mathrm{X} \leq \mathrm{X} 1$

$$
\begin{aligned}
& c=\frac{1-\frac{Y 0}{Y 2}}{1-\frac{X 0}{X 2}} \text { or } c=1 \\
& c=\frac{Y 1-Y 2}{X 1-X 2} \cdot \frac{X 2}{Y 2} \text { or } c=1 \\
& c=\frac{1-\frac{Y 1}{Y 2}}{1-\frac{X 1}{X 2}} \text { or } c=1
\end{aligned}
$$

Fig. 3. Examples of settings with linear characteristic.

Reference conditions

Ambient temperature
Pre-conditioning
Input variable
Power supply
Active/reactive factor
Frequency
Waveform
Output load

Miscellaneous

Fig. 4. Examples of settings with bent characteristic.
$+23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$
30 min. acc. to DIN EN 60688
Section 4.3, Table 2
Rated useful range
$\mathrm{H}=\mathrm{Hn}+1 \%$
$\cos \varphi=1$ resp. $\sin =1$
$50 \ldots 60 \mathrm{~Hz}, 162 / 3 \mathrm{~Hz}$
Sinusoidal, form factor 1.1107
DC current output:
$\mathrm{R}_{\mathrm{n}}=\frac{7.5 \mathrm{~V}}{\mathrm{Y} 2}+1 \%$
DC voltage output:
$\mathrm{R}_{\mathrm{n}}=\frac{\mathrm{Y} 2}{1 \mathrm{~mA}}+1 \%$
DIN EN 60688

Influencing quantities and permissible variations
Acc. to DIN IEC 688

Power Supply $\rightarrow 0$
AC voltage

100, 110, 230, 400, 500 or 693 V, $+10 \%, 45$ to 65 Hz
Power consumption approx. 10 VA
AC/DC power pack (DC and $50 \ldots 60 \mathrm{~Hz}$)
Table 9: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V}$ DC/AC	DC $-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC/AC	AC $\pm 10 \%$

Consumption:
≤ 9 W resp. $\leq 10 \mathrm{VA}$

Programming connector on transducer

Interface
DSUB socket

Ambient conditions
Climatic rating
Variations due to ambient
temperature
Nominal range of use for temperature
Storage temperature Annual mean relative humidity

RS 232 C
9-pin

The interface is electrically insulated from all other circuits

Climate class 3 acc. to VDI/VDE3540
$\pm 0.1 \% / 10 \mathrm{~K}$
$0 . . .15 \ldots 30 \ldots 45^{\circ} \mathrm{C}$ (usage group II)
-40 to +850 C
< 75%

Applicable standards and regulations

Table 4 :

DIN EN 60 688	Electrical measuring transducers for converting AC electrical variables into analogue and digital signals
IEC 1010 or EN 61 010	Safety regulations for electrical measuring, control and laboratory equipment
EN 60529	Protection types by case (code IP)
IEC 255-4 Part E5	High-frequency interference test (solid-state relays only)
IEC 1000-4-2,3,4,6	Electromagnetic compatibility for industrial process measurement \& control equipment
VDI/VDE 3540, page2	Reliability of measuring and control equipment (classification of climates)
DIN 40 110	AC quantities
DIN 43 807	Terminal markings
IEC 68 /2-6	Basic environmental testing procedures, vibration, sinusoidal
IEC 1036	Solid state AC watt hour meters for active power (Classes 1 and 2)
DIN 43864	Current interface for the transmission of impulses between impulse encoder counter and tariff meter
UL 94	Tests for flammability of plastic materials for parts in devices and appliances

Safety

Protection class	II
Enclosure protection	IP 40, housing
	IP 20, terminals
Overvoltage category	III
Insulation test (versus earth)	Input voltage : AC 400 V
	Input current : AC 400 V
	Output : DC 40 V
	Power supply : AC 400 V
	DC 230 V

Surge test
Test voltages
$5 \mathrm{KV} ; 1.2 / 50$ us; 0.5 Ws
$50 \mathrm{~Hz}, 1 \mathrm{Min}$. according to DIN EN 61 010-1
5550 V , inputs versus all other circuits as well as outer surface 3250 V , input circuits versus each other
3700 V, power supply versus outputs and SCl as well as outer surface
490 V , outputs and SCI versus each other and versus outer surface

Vibration withstand
(tested according to DIN EN 60 068-2-6)
Acceleration
Frequency range
Number of cycles
Result

Installation data

Housing

Housing material

Mounting

Orientation
Weight

Terminals

Type
Max. wire gauge

Lugs
$\pm 2 \mathrm{~g}$
10... 15010 Hz , rate of frequency sweep: 1 octave/minute 10 in each of the three axes No faults occurred, no loss of accuracy and no problems with the snap fastener

HousingT24
See Section "Dimensioned drawings"
Lexan 940 (polycarbonate), flammability class V-0 acc. to UL 94, self-extinguishing, nondripping, free of halogen For snapping onto top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022 or
directly onto a wall or panel
using the pull-out screw hole brackets
Any
With supply transformer
approx. 1.1 kg
With AC/DC power pack
approx. 0.7 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm}^{2}$ single wire or
$2 \times 2.5 \mathrm{~mm}^{2}$ fine wire
(use Taparia Screw driver-type 902)

To use flat head lugs with total metal length (J) greater than or equal to 17 mm .
Lug

Table 10 : RISH Ducer MXX, standard version
The two versions of the transducer below with the basic programming are available AC Aux. \& AC/DCAux.

\# Other specifications on request contact to Factory

Electrical Connections

Table 11 :

If power supply is taken from the measured voltage internal connections are as follow:
Table 12 :

Application (system)	Internal connection Terminal / System
Single phase AC current	$2 / 11(\mathrm{~L} 1-\mathrm{N})$
4-wire 3-phase symmetric load	$2 / 11(\mathrm{~L} 1-\mathrm{N})$
All other *	$2 / 5(\mathrm{~L} 1-\mathrm{L} 2)$

Table 14 :

uring						
System / application	Terminals					
3-wire 3-phase symmetric load I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:					
3-wire 3-phase symmetric load Phase-shift U: L1 - L2 I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:					
3-wire 3-phase symmetric load Phase-shift U: L3-L1 I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:					

[^1]System / application

* Contact to factory for complete details

Relationship between PF, QF and LF

Fig. 5. Active power PF----- , reactive power QF ------power factor LF------ .

Dimensional Drawing

Fig. 6. RISH Dueer MXX in housing T24 clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50022).

Fig. 7. RISH Duer MXX in housing
T24, screw hole mounting

Ordering Information

Table 15 : Ordering information for RISH Duer MXX models
(see also Table 10: Standard version)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DESCRIPTION \& M42 \& M24 \& M20 \& M30 \& M40 \& M00 \& M01 \\
\hline \begin{tabular}{l}
1. Specify the type of system \\
(1 phase, 3 phase 3 wire / 3 phase 4 wire / balanced / unbalanced etc.) C.T. / P.T. Ratio
\end{tabular} \& \(\square\) \\
\hline \begin{tabular}{l}
2. Rated frequency \\
1) \(50 \mathrm{~Hz}\left(60 \mathrm{~Hz}\right.\) possible without additional error; \(162 / 3 \mathrm{~Hz}\), additional error \(1.25{ }^{\circ} \mathrm{c}\)) \\
2) \(60 \mathrm{~Hz}(50 \mathrm{~Hz}\) possible without additional error; \(162 / 3 \mathrm{~Hz}\), additional error \(1.25 \cdot \mathrm{c}\)) \\
3) \(162 / 3 \mathrm{~Hz}\) (not re-programming by user, \(50 / 60 \mathrm{~Hz}\) possible, but with additional error \(1.25 \cdot \mathrm{c}\))
\end{tabular} \& \multicolumn{7}{|c|}{\[
\begin{aligned}
\& \square \\
\& \square \\
\& \square
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
3. Power supply \\
1) \(D C / A C \quad 24 \ldots 60 \mathrm{~V}\) \\
2) DC/AC \(85 \ldots 230 \mathrm{~V}\)
\end{tabular} \& \multicolumn{7}{|c|}{\[
\begin{aligned}
\& \square \\
\& \square
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
4. Power supply connection \\
1) External (standard) \\
2) Internal from voltage input ** \\
Line 2: Not available for rated frequency \(162 / 3 \mathrm{~Hz}\) Contact Factory for further details
\end{tabular} \& \multicolumn{7}{|c|}{\[
\begin{aligned}
\& \square \\
\& \square
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
5. Full-scale output signal, output A \\
1) Output \(A, Y 2=20 \mathrm{~mA}\) (standard) \\
9) Output A, Y2 [mA] \\
Z) Output A, Y2 [V] \(\square\) * \\
Line 9: Full-scale current \(\mathrm{Y} 2[\mathrm{~mA}] 1\) to 20 \\
Line Z: Full-scale voltage \(\mathrm{Y} 2[\mathrm{~V}] 1\) to 10
\end{tabular} \& \begin{tabular}{l}
N. A.
\(\square\)
\(\square\) \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
N. A.
\(\qquad\) \\
\(\square\) \(\square\)
\end{tabular} \& \begin{tabular}{l}
N. A.
\(\square\) \\
\(\square\) \\
\(\square\) \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
N.A.
\(\square\) \\
\(\square\)

\end{tabular} \& N. A.

\square
\square

\square \& | N.A. |
| :--- |
| N. A. |
| N.A. |
| N.A. | \& N.A.

N.A.
N.A.
N.A.

\hline
\end{tabular}

[^2]| DESCRIPTION | M42 | M24 | M20 | M30 | M40 | M00 | M01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6. Full-scale output signal, output B
 1) Output $B, Y 2=20 \mathrm{~mA}$ (standard)
 9) Output B, Y2 [mA]
 Z) Output B, Y2 [V] | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \\ & \hline \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \\ & \hline \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ N.A. |
| 7. Full-scale output signal, output C
 1) Output C, Y2 $=20 \mathrm{~mA}$ (standard)
 9) Output $\mathrm{C}, \mathrm{Y} 2[\mathrm{~mA}]$
 Z) Output C, Y2 [V] | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | N.A.
 N.A.
 N.A. | N.A.
 N.A.
 N.A. | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | N.A.
 N.A.
 N.A. |
| 8. Full-scale output signal, output D
 1) Output $D, Y 2=20 \mathrm{~mA}$ (standard)
 9) Output $D, Y 2[\mathrm{~mA}]$
 Z) Output D, Y2 [V] | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | N.A.
 N.A.
 N.A. | N.A.
 N.A.
 N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ N.A. |
| 9. Digital Output E
 Specify output
 i) Limit control or
 ii) Pulse output
 Also specify the parameter and their details separately | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \square \\ & \square \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ |
| 10. Digital Output F
 Specify output
 i) Limit control or
 ii) Pulse output
 Also specify the parameter and their details separately | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \square \\ & \square \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ |
| 11. Digital Output G
 Specify output
 i) Limit control or
 ii) Pulse output
 Also specify the parameter and their details separately | $\begin{aligned} & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \square \\ & \square \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ |
| 12. Digital Output H
 Specify output
 i) Limit control or
 ii) Pulse output
 Also specify the parameter and their details separately | $\begin{aligned} & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \square \\ & \square \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | N.A. N.A. | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ | $\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$ |
| 13. Test certificate
 0) None supplied
 1) Supplied | $\begin{aligned} & \square \\ & \square \end{aligned}$ | | | | | | |
| 14. Programming
 0) Basic
 9) According to specification \qquad
 Line 0: Not available if the power supply is taken from the voltage input | | | | | | | |

* Specify separately

[^0]: * Refer dedicated data sheet for complete product details.

[^1]: * Contact to factory for complete details

[^2]: * Specify separately
 ** Contact Factory for complete details

